Acta Numerica (1993), pp. 199-237

Linear stability analysis
in the numerical solution
of initial value problems

J.L.M. van Dorsselaer
J.F.B.M. Kraaijevanger
M.N. Spijker

Department of Mathematics and Computer Science,
University of Leiden
The Netherlands
E-mail: spijker@rulcri.leidenuniv.nl

This article addresses the general problem of establishing upper bounds for the
norms of the nth powers of square matrices. The focus is on upper bounds that
grow only moderately (or stay constant) when n, or the order of the matrices,
increases. The so-called resolvent condition, occurring in the famous Kreiss
matrix theorem, is a classical tool for deriving such bounds.

Recently the classical upper bounds known to be valid under Kreiss’s resol-
vent condition have been improved. Moreover, generalizations of this resol-
vent condition have been considered so as to widen the range of applications.
The main purpose of this article is to review and extend some of these new
developments.

The upper bounds for the powers of matrices discussed in this article are
intimately connected with the stability analysis of numerical processes for
solving initial(-boundary) value problems in ordinary and partial linear dif-
ferential equations. The article highlights this connection.

The article concludes with numerical illustrations in the solution of a simple
initial-boundary value problem for a partial differential equation.
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1. Introduction
1.1. Linear stability analysis

This article deals with step-by-step methods for the numerical solution of
linear differential equations. Both initial-boundary value problems in par-
tial differential equations and initial value problems in ordinary differential
equations will be included in our considerations.

A crucial question in the step-by-step solution of such problems is whether
the method will behave stably or not. Here we use the term stability to desig-
nate that any numerical errors, introduced at some stage of the calculations,
are propagated in a mild fashion - i.e. do not blow up in the subsequent steps
of the methods.

Classical tools to assess the stability a priori, in the numerical solution of
partial differential equations, include Fourier transformation and the corre-
sponding famous Von Neumann condition (see the classical work by Richt-
myer and Morton (1967)). Further tools of recognized merit for assessing
stability, in the solution of ordinary differential equations, comprise the so-
called stability regions in the complex plane (see e.g. the excellent works by
Butcher (1987) and Hairer and Wanner (1991)). During the last 25 years
these stability regions have been studied extensively; numerous papers have
appeared dealing with the shape and various peculiarities of these regions.

However, these tools are based on the behaviour that the numerical me-
thod would have when applied to quite simple test problems. Accordingly,
in the case of partial differential equations, Fourier transformation provides
a straightforward and reliable stability criterion primarily only for pure ini-
tial value problems in linear differential equations with constant coefficients.
Similarly, in the case of ordinary differential equations, stability regions are
primarily relevant only to scalar equations

U'(t)=XU(t) fort>0, (1.1)

with given complex constant A.

In the pioneering work by F. John (1952) the scope of Fourier transfor-
mation had already been widened in that it was used in deriving sufficient
conditions for stability in the numerical solution of linear partial differen-
tial equations with variable coefficients. For subsequent related work, rel-
evant to equations with variable coefficients and to initial-boundary value
problems, the reader may consult Richtmyer and Morton (1967), Kreiss
(1966), Gustafsson, Kreiss and Sundstrém (1972), Meis and Marcowitz
(1981), Thomée (1990), and the references therein.

Clearly, rigorous stability criteria with a wider scope than the simple clas-
sical test equations are important — both from a practical and a theoretical
point of view. It is equally important to know to what extent stability re-
gions can be relied upon in assessing stability in the numerical solution of
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differential equations more general than (1.1). The present article reviews
and extends some recent developments which are relevant to these two ques-
tions. No essential use will be made of Fourier transformation.

1.2. Stability and power boundedness
In this paper we shall deal with numerical processes of the form
Up = Bup—1+b, forn=1,23,..., (1.2)

with a given square matrix B of order s > 1 and given s-dimensional vec-
tors b,. The s-dimensional vectors u,, are computed sequentially from (1.2)
starting from a given vector up. Processes of the form (1.2) occur in the
numerical solution of linear initial value problems that are essentially more
general than the simple classical test problems mentioned earlier. The vec-
tors u, provide numerical approximations to the true solution of the initial
(-boundary) value problem under consideration.

As an illustration of (1.2) we consider the initial-boundary value problem

u(z,t) = a(T)ugz(z,t) + b(z)uz(z,t) + c(z)u(z, t) + d(z),
uz(Oy t) =0, u(lat) = g(t)v (13)
u(xv O) = f(:l?),
where 0 <z < 1,t >0 and a,b,c,d, f, g are given functions with
a(z) >0, b(z)>0, c(z)<0.

We choose At = h > 0, Az = 1/s and consider the approximation of
u(j/s,nh) by quantities u7. The following finite difference scheme has been
constructed by standard principles (see Richtmyer and Morton (1967)):

A} —uph) =
#ali 005, =205 +15) + (1 =05 ~ 257+ )
+b(j/){Buly — u2) + (1= O)(uld — uf ™))}
+e(j/s){0u] + (1 - 8)u}~'} + d(j/s),

w7 = =gl - D),
uj = f(3/8)
where j = 0,1,...,s — 1l and n = 1,2,3,.... 6 denotes a parameter, with

0 < 6 < 1, specifying the finite difference method.
Defining vectors u,, by

ug u(0, nh)
ul u(1/s,nh)

un = . = . )
U1 u((s — 1)/s,nh)
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one easily verifies that the u, satisfy a relation of the form (1.2). Here the
matrix B satisfies

B=(I+(1-0)hA)I—0hA)™, (1.4)

where I denotes the s x s identity matrix and A = (o k) an s x s tridiagonal
matrix with its (nonzero) entries given by

o141 = —2s%a(j/s) — sb(j/s) +c(i/s) (0<j<s-1),

Qj+1,5 = s2a(j/s) (1 <j<s-—- 1)7 (1 5)
ajr1i+2 = s%a(j/s)+ sb(j/s) (1<j<s-2), '
ojr1j+2 = 25%a(j/s) + sb(j/s) (j =0).

Suppose the numerical calculations based on the general process (1.2) were
performed using a perturbed starting vector ug, instead of ug. We would
then obtain approximations that we denote by u,. For instance uy may
stand for a finite-digit representation in a computer of the true ug, and the
4, then stand for the numerical approximations obtained in the presence of

the rounding error vy = g — up-
In the stability analysis of (1.2) the crucial question is whether the dif-
ference v, = U, — u, (for n > 1) can be bounded suitably in terms of the

perturbation vg = %y — ug. Since

we have
Un = B'Un—l,

and consequently
v, = B™y.

The last expression makes clear that a central issue in stability analysis
is the question of whether given matrices have powers that are uniformly
bounded. Accordingly, in the following we focus, for an arbitrary s x s
matrix B, on the stability property

|B*|| < My forn=0,1,2,..., (1.6)
where M) is a positive constant. For the time being || - || stands for the
spectral norm, i.e. for the norm induced by the Euclidean vector norm in
C*® (for an s x s matrix A we have ||A| = max{|Az|/|z| : £ € C* with

x # 0}, where | - | denotes the Euclidean norm defined by |z| = vz*z with
z* standing for the Hermitian adjoint of the column vector z € C¥).

1.8. Power boundedness and the eigenvalue condition

For any given matrix B one can easily deduce from its Jordan canonical
form (see, e.g., Horn and Johnson (1990)) a criterion for the existence of
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an My with property (1.6). A necessary and sufficient requirement for the
existence of such an M| is the following eigenvalue condition:

All eigenvalues A of B have modulus |A| < 1, and
the geometric multiplicity of each eigenvalue with (1.7)
modulus 1 is equal to its algebraic multiplicity.

However, in the stability analysis of numerical processes one is often in-
terested in property (1.6) for all B belonging to some infinite family F of
matrices. The crucial question then is whether a single finite M exists such
that (1.6) holds simultaneously for all B belonging to F. In this situation,
(1.7) may only provide a condition that is necessary (and not sufficient) for
such an M; to exist.

For instance, in the example of Section 1.2 one can only expect great
accuracy in the approximations u} to u(j/s,nh) when Az (and At) become
very small. Accordingly one is primarily interested in bounds for B™ that
are uniformly valid for all B of the form (1.4), (1.5) with arbitrarily small
Az =1/s.

An instructive counterexample, illustrating the fact that criterion (1.7)
can be misleading for the case of families F, is provided by the s x s bi-
diagonal matrices

-1/2  3/2 0
-1/2 (1.8)
3/2

0 _1/2

Matrices of the form (1.8) may be thought of as arising in the numerical
solution of the initial-boundary value problem

Ut(a),t) = ux(x,t),
u(l,t) =0, wu(z,0)= f(z), where0<z<1,t>0.

Consider the finite difference scheme

h_l(u;‘ - u;‘_l) = s(u;‘;l1 - u;-‘_l),

=0, = f(j/s).
Here At = h > 0, Az = 1/s, and u} approximates u(j/s,nh) for j =
0,1,...,s—1and n = 1,2,3,.... Clearly, with the choice hs = 3/2 this
finite difference scheme can be written in the form (1.2) with B as in (1.8).

For each s > 1 the matrix B defined by (1.8) satisfies the eigenvalue
condition (1.7).
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Defining the s x s shift matrix £ by
E= - : (1.9)

we have from (1.8) the expression
- _1 3

B =—31+3FE,
so that

n n B

B" = Z (k) (__%)n k(%)kEk.
k=0
Defining x to be the s-dimensional vector whose jth component equals ; =
(—1)7, and denoting the jth component of y = B™z by 7; we easily obtain,
from the above expression for B™,
n n _ )
il =>_ (k @GykE)F =2 for1<j<s—n.
k=0

For s > n we thus have

1/2
8
(Zlmlz) >vVs—n2",
j=1

and since

, 1/2
(Z |§j|2) = /s,
j=1

it follows that ||[B"|| > /1 — n/s2". Denoting the s x s matrix B by B, we
thus have

I(B2n)|| = 22 forn=1,2,3,....

Clearly, no My can exist such that (1.6) is valid for all B belonging to
F={Bs:s=1,23,...}.

The fact that the eigenvalue criterion can be a misleading guide to sta-
bility was already known in the 1960s, see e.g. Parter (1962). A related,
but stronger, necessary requirement for stability is the so-called Godunov-
Ryabenkii stability condition, a discussion of which can be found, e.g., in
Richtmyer and Morton (1967), Morton (1980) and Thomée (1990). The
latter condition is not satisfied in example (1.8).

The earlier counterexample is similar to examples in Richtmyer and Mor-
ton (1967), Spijker (1985), Kreiss (1990) and Reddy and Trefethen (1992).
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Further examples of instability under the eigenvalue condition (1.7) can be
found in Griffiths, Christie and Mitchell (1980), Kraaijevanger, Lenferink
and Spijker (1987) and Lenferink and Spijker (1991b). The matrices B in
these references have s different eigenvalues A with |A\| < 1, and occur in
the numerical solution of problems of the form (1.3). See Trefethen (1988)
and Reddy and Trefethen (1992) for related counterexamples in spectral
methods.

We conclude this subsection with the remark that in some special cases the
eigenvalue criterion can be reliable. For normal matrices B (i.e. B*B = BB*
with B* denoting the Hermitian adjoint of B) the stability estimate (1.6)
is valid with My = 1 as soon as all eigenvalues of B have a modulus not
exceeding 1 (see, e.g., Horn and Johnson (1990)). But, in general, one has
to look for conditions different from (1.7).

1.4. Power boundedness and the resolvent condition

The famous Kreiss matriz theorem (see, e.g., Kreiss (1962) and Richtmyer
and Morton (1967)) relates (1.6) to conditions on B which are more reliable
than (1.7). One of these conditions involves the so-called resolvent ((I —
B)~! of B, and reads as follows:

¢I — B is invertible and ||(¢I — B)~}|| < My(|¢| — 1)1

for all complex numbers ¢ ¢ D. (1.10)

Here M, is a positive constant, I the s x s identity matrix and
D={¢(:{e€Cand|(] <1}

the closed unit disk in the complex plane.
If (1.6) is satisfied, then all eigenvalues of B lie in D, so that for all { ¢ D
the matrix (I — B is invertible and

[e.¢}

Z C_k_l Bk
k=0

Hence (1.6) implies (1.10) with M; = M. The Kreiss matrix theorem
asserts that, conversely, (1.10) implies (1.6) with M, depending only on M;
and the dimension s, but otherwise independent of the matrix B.

The Kreiss matrix theorem has often been used in the stability analysis
of numerical methods for solving initial value problems for partial differ-
ential equations. In the classical situation the matrices B are obtained by
Fourier transformation of the numerical solution operators, and they stand
essentially for the so-called amplification matrices (see, e.g., Richtmyer and
Morton (1967)). These matrices are of a fized finite order s. On the other
hand, the implication of (1.6) by (1.10) can also be used without Fourier
transformation, with B standing for the numerical solution operator in (1.2).

I¢I - B)™Y| = <Y KMy = Mo([¢| - 1)L

k=0
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In this situation we may be dealing with a family of matrices B of finite —
but not uniformly bounded — orders s. Therefore, of particular interest is
the dependence of the stability constant M in (1.6) on the dimension s (see
also Tadmor (1981)).

Various authors (see, e.g., Morton (1964), Miller and Strang (1966), Tad-
mor (1981), LeVeque and Trefethen (1984) and Spijker (1991)) have studied
the size of (the optimal) M, as a function of M; and s, and recently some
open problems in this field were solved. Moreover, the implication of (1.6) by
(1.10) as previously discussed has recently been generalized in several direc-
tions. More general norms than the spectral norm have been dealt with and
the resolvent condition (1.10) has been adapted to domains different from
the unit disk D. In the latter case the matrices B in (1.6) and (1.10) are not
the same, but are related to each other by a given (rational) transformation.

1.5. Scope of the rest of the article

In the rest of this article we review and extend some of the recent re-
sults just mentioned, and illustrate them in the numerical solution of initial
(-boundary) value problems.

In Section 2 we still deal with resolvent condition (1.10) with respect to
the unit disk D, but we consider general norms on the vector space of all
s X s matrices. In this situation we focus on the best upper bounds for | B™||
that are possible under condition (1.10).

In Section 3.1 we relate estimates like (1.6) more explicitly to the stabil-
ity analysis of numerical methods for the solution of ordinary and partial
differential equations. In Section 3.2 we show that in this analysis it is use-
ful to consider resolvent conditions with respect to regions V' C C that are
different from the unit disk D. The focus will be on regions V that are
contained in the stability regions corresponding to the numerical methods
under consideration. We give a review of stability estimates from the lit-
erature based on resolvent conditions with respect to such V. Section 3.3
provides various comments on these estimates. We confine our considera-
tions throughout to so-called one-step methods. For related stability results
pertinent to (linear) multistep methods we refer to Crouzeix (1987), Grig-
orieff (1991), Lubich (1991), Lubich and Nevanlinna (1991) and Reddy and
Trefethen (1990, 1992).

Section 4 deals with various concepts and problems that are related to
(generalized) resolvent conditions. In Section 4.1 the resolvent condition is
related to the concept of e-pseudospectra recently used by Trefethen and
others (see e.g. Trefethen (1992) and Reddy and Trefethen (1990, 1992)). In
Section 4.2 it is related to the so-called M-numerical range introduced by
Lenferink and Spijker (1990). Part of the material presented here is used in
some proofs given in Section 2. In Section 4.3 we consider the problem of
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bounding the exponential function of a matrix under the assumption that
the matrix satisfies a resolvent condition (with respect to the complex left
half plane).

In Section 5 we focus on the range of applications of the stability re-
sults reviewed in Section 3. Moreover, a numerical illustration is presented
involving the solution of a partial differential equation.

2. Stability estimates under resolvent conditions with
respect to the unit disk

2.1. The classical situation for arbitrary M, > 1

We start by reviewing classical upper bounds for ||B"|| that were derived
from (1.10), with || - || standing for the spectral norm.

As already mentioned in the introduction, the Kreiss matrix theorem as-
serts, for the spectral norm, that resolvent condition (1.10) implies power
boundedness (1.6) with a stability constant My depending only on M; and
the dimension s. According to Tadmor (1981), the original proof by Kreiss
(1962) yields an upper bound || B"|| < My with

M() >~ (Ml)ss,

which is far from sharp. After successive improvements by various authors
(Morton, 1964; Miller and Strang, 1966), it was Tadmor (1981) who suc-
ceeded in proving a bound that is linear in s,

IB™|| < 32er~1sM;.

LeVeque and Trefethen (1984) lowered this upper bound to 2esM;, and
conjectured that the latter bound can be improved further to

|B"|| <esM; forn=0,1,2,.... (2.1)

Moreover, these authors showed by means of a counterexample that the
factor e in (2.1) cannot be replaced by any smaller constant — if the upper
bound is to be valid for arbitrary factors M; in (1.10) and arbitrarily large
integers s.

Smith (1985) proved a result which, combined with the arguments of
LeVeque and Trefethen (1984), leads to the improved upper bound ||B"| <
n~1(m 4 2)esM, which is an improvement over the upper bound 2esM; but
still weaker than conjecture (2.1). The conjecture was finally proved to be
true by Spijker (1991) (see also Wegert and Trefethen (1992)).

In addition to the upper bound (2.1), which is linear in s and independent
of n, it is possible to derive an upper bound from (1.10) that is linear in n
and independent of s. By the Cauchy integral formula (see, e.g., Conway



208 J.L.M. VAN DORSSELAER ET AL.

(1985)) we have
n __ L n _ -1
B" = 27ri/1"C (¢ - B)~"d¢, (2.2)

where the contour of integration I' is any positively oriented circle |{| = 1+¢
with € > 0. Choosing € = 1/n it readily follows from (1.10) and (2.2) that

IB*| <(Q+1/n)"(n+1)M; <e(n+1)M; forn=1,2,3,... (2.3)

(see also Reddy and Trefethen (1990) and Lubich and Nevanlinna (1991)).

In the next subsection we will discuss a generalization of the upper bounds
(2.1), (2.3) to norms different from the spectral norm. We will also investi-
gate the sharpness of these bounds in the general case.

2.2. Stability estimates for arbitrary My > 1 and arbitrary norms

In this subsection we consider a generalization of the upper bounds (2.1),
(2.3) to the case where || - || is an arbitrary norm on C**, the vector space
of all complex s x s matrices. If the norm is submultiplicative (i.e. ||AB|| <
[|All||B|| for all A, B € C*°) the norm is called a matriz norm. Norms for
which ||I|| = 1 are called unital.

Theorem 2.1 Let s > 1, B € C*>° and || - || denote an arbitrary norm on
the vector space C*7.

(a) If (1.6) holds for some My, then (1.10) holds with M; = My;
(b) If (1.10) holds for some M, then

|IB*| < (1+1/n)"min(s,n+1)M; forn=1,2,3,.... (2.4)

Proof. 1. The proof of (a) is the same as the proof in Section 1.4 for the
spectral norm. Since the proof of (2.3) as given in Section 2.1 also remains
valid for arbitrary norms, the proof of (b) is complete if we can show that

|IB*| < (1+1/n)"sM; forn=1,2,3,.... (2.5)

In order to prove (2.5) we now consider arbitrary but fixed n > 1 and B
satisfying (1.10).

2. A well known corollary to the Hahn-Banach theorem (see, e.g., Chapter
3 in Rudin (1973), or Chapter 5 in Horn and Johnson (1990)) states that,
corresponding to any normed vector space X and vector y € X, there exists
a linear transformation F : X — C with

F(y)=|lyl|| and |F(z)| <|z| forall z€ X.

Applying this result with X = C%® y = B™ we see that a linear F': C%°* —» C
exists with
|F(A)| < ||A]| for all s x s matrices A, (2.6)
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F(B") = |B"||. (2.7)
Combination of (2.7) and (2.2) yields

1
ni — _~ n
1871 = 5. [ RO e,
where I is the positively oriented circle || =1+ 1/n and R is the rational
function defined by R(¢) = F((¢I — B)™1). Integration by parts gives

B = [erR©Q A< gy [IROI) (28

2mi(n + 1)

3. Let Ej;; stand for the s x s matrix with entry in the jth row and kth
column equal to 1, and all other entries 0. Denoting the entries of the matrix
(¢I — B)™! by 7j,(¢) we thus have

¢I-B)™t ka Ej,

and therefore also

R(¢) = Z"'Jk(c F(E]k)

ik

We define a rational function to be of order s if its numerator and denom-
inator are polynomials of a degree not exceeding s. By Cramer’s rule, the
r;k(¢) are rational functions of order s with the same denominator. Hence
R(() is also of order s.

It was proved by Spijker (1991) that, for any rational function R(¢) which
has no poles on the circle I' and is of order s, the following inequality holds:

JIR@ld¢| < 2ms mpx |R(C)! (29)

The proof of (2.5) now easily follows by a combination of (2.8), (2.9), (2.6)
and (1.10). O

We remark that this proof of (2.5) is essentially based on ideas taken
from LeVeque and Trefethen (1984) and Lenferink and Spijker (1991a). For
an interesting discussion and generalization of inequality (2.9) we refer to
Wegert and Trefethen (1992).

In the following theorem we focus on the sharpness of the bound (2.4) in
the case n = s — 1.

Theorem 2.2 Let s > 2 and an arbitrary norm || - | on C** be given.
Then

1 s—1
sup{l[B* /M (B): B e, Mi(B)<ooh= (14 —5) s, (210)
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where M;(B) denotes the smallest M; such that (1.10) holds (we define
M, (B) = oo if (1.10) is not fulfilled for any Mj).

Proof. Define B € C** by B = «E, where v > 0 is large and the s x s
matrix F is defined by (1.9). We have

_ ¢ —
My(B) = sup(i¢| — DI(¢I — B)Y = sup 1= z( )
[¢]>1 [¢|>1 |(| =0
s—1
s Z%”J‘*r’lll’f’ll = uemrr B (14 0(r 7)),
]:
where
_ -i-1 _ - J — -Jj- 1
m—am(l(l DICIT™ = max (1 -2)e’ = 7(j+1)
so that

1B /My(B) > 1/psr+0O(77?)
N (1 + s—%)s—ls +0(r™") (asy = co).

It follows that the left-hand member of (2.10) is not smaller than the right-
hand member. In view of (2.4) the proof is complete. O

Corollary 2.3 For each s > 1, let a norm || - || = || - ||®) be given on
C*%. Then there exist matrices B, € C%° for s = 1,2,3,..., such that
M;(B;) < oo and

I(Bo)*~1[|®) ~ esM:1(B,) (as s — o0), (2.11)

where M;(B;) has the same meaning as in Theorem 2.2.
Proof. Immediate from Theorem 2.2. O

This corollary was proved by LeVeque and Trefethen (1984) for the spec-
tral norm. Our proof of Theorem 2.2 is essentially based on ideas taken
from that paper.

In view of (2.4), the estimate (2.1) is valid for general norms || - | on C**.
By virtue of Corollary 2.3, this general version of (2.1) is sharp in the sense
of (2.11). However, it should be emphasized that this does not resolve the
sharpness question for given fized M,, since M1(B;) in (2.11) may depend
on s. In the next two subsections we will focus on the situation where M;
is a given fixed number.
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2.8. About the best stability estimates for M1 =1

In the special situation where the resolvent condition (1.10) holds with
M; = 1, the upper bound (2.4) can be improved in various ways. First
we concentrate on arbitrary matrix norms on C**, and at the end of this

subsection we focus on matrix norms || - ||, induced by the pth Hélder norm
on C*® (for p=1,2,00).
Theorem 2.4 Let s > 1, B € C*® and || - || denote an arbitrary matrix

norm on C**. If (1.10) holds with M; = 1, then
|B*| £ nln""e" < y/27(n+1) forn=1,2,3,.... (2.12)

Proof. Property (1.10) with M; = 1 implies that
le*B|| < el forall z €cC.

This can be seen from Theorem 4.7, to be presented in Section 4, or more
directly by using
—k k —k
e’B = lim [I - EB] = lim (E) {51 - B]
k—oo k k—oo \ 2 z
and applying (1.10) with { = k/z.
We have
B” = _n_'_ / z—n—lezB dz
27i Jr ’

where I’ is the positively oriented circle with radius n and centre 0. Therefore
|B*|| £ n!n~"e™. From Stirling’s formula

n! = (n/e)"V2rnexplf,(12n)"!] with0< 6, <1
(see, e.g., Abramowitz and Stegun (1965)), we finally obtain

IB*|| < V2rnexp[(12n)71] < y/2n(n + 1).

a

This proof of (2.12) is essentially based on ideas taken from Bonsall and
Duncan (1980) (see also Bonsall and Duncan (1971)). Another proof can
be given along the lines of Lubich and Nevanlinna (1991) (Theorem 2.1) or
McCarthy (1992).

The next theorem shows that the upper bound for ||[B™|| in (2.12) is sharp.
For the elegant proof, which is beyond the scope of this paper, we refer to
McCarthy (1992).

Theorem 2.5 Let s > 2 be given. Then there exists a vector norm on C?*
such that the s x s shift matrix E, defined by (1.9), has the following two
properties with respect to the corresponding induced matrix norm || - ||:



212 J.L.M. VAN DORSSELAER ET AL.

(a) FE satisfies the resolvent condition (1.10) with M, = 1;
(b) |E*|| =nle™n™ > V2rnforn=1,2,...,5—1.

According to the following theorem the stability estimate (2.12) can be
substantially improved for the case of some important matrix norms.

Theorem 2.6 Let s > 1, Q € C** invertible, and p = 1,2 or oo. Let the
norm || - || on C*° be defined by ||A|| = |QAQ ||, (for all A € C**). Then
(1.10) with M; = 1 implies (1.6) with My =1 (if p =1 or o) or My =2 (if
p=2).

Proof. Since the result for general invertible @ easily follows from the result
for @ = I, it is sufficient to consider the latter case only.

Let p = co. Suppose B = (8;i) satisfies (1.10) with ||- || = ||+ [|oo, M1 = 1.
Clearly (4.11) holds with W = D, M = 1. By Theorem 4.7 relation (4.10)
holds as well. In view of the expression for 71[B] (with ||-|| = ||-||cc) given at

the end of Section 4.2, we conclude that each disk with its centre at 3;; and
radius p; = 34, |Bjk| lies in the unit disk D. Consequently, |3;;] +p; <1,
and

1Blloo = max (1651 + p;) < 1,

so that (1.6) holds with My = 1.

For p = 1 the proof follows from the result for p = oo and the fact that
|A]l1 = ||AT||oo for all A € C%* (where AT denotes the transpose of A).

For p = 2 the value My = 2 was stated, e.g., in Reddy and Trefethen
(1992) and McCarthy (1992). The proof runs as follows. It can be seen by
a straightforward calculation (or directly from the material in Bonsall and
Duncan (1980) or Lenferink and Spijker (1990)) that the numerical range
{z*Bz : ¢ € C® with z*x = 1} is contained in the unit disk D. The
proof continues by applying Berger’s inequality (see, e.g., Pearcy (1966),
Richtmyer and Morton (1967 p. 89), Bonsall and Duncan (1980) or Horn
and Johnson (1990)). This inequality reads

r(A") < [r(A)]* forn=1,23,...,

where A is any s X s matrix, and r(A) denotes the so-called numerical radius
of A defined by

r(A) = max {|z* Az| : ¢ € C° with z*z = 1}.
Since r(B) < 1, there follows
r(B™") < 1.

By splitting B™ into a sum B™ = A; + iAs with Hermitian A, A, and
by noting that for any Hermitian A the relation ||A|l2 = r(A) is valid, we
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finally obtain
1Bl < |41l + [|A2]| = r(A1) + r(A2) < 2r(B™) < 2.
O

2.4. About the best stability estimates for fived M, > 1

Theorem 2.1 shows that if resolvent condition (1.10) is satisfied with fixed
M;, then ||B"|| can grow at most linearly with n or s. Corollary 2.3 reveals
that the corresponding upper bound is sharp — if we allow M to be variable.

For the special case M, = 1, however, this linear growth with n or s is
too pessimistic, as can be seen from Theorems 2.4 and 2.6 in the previous
subsection.

For fixed values M; > 1 the question also arises as to whether the upper
bound (2.4) can be improved. We do not know of any positive results in this
direction. In the following we shall therefore present negative results only —
in the form of lower bounds for || B"||.

A negative result we have seen already is Theorem 2.5, which is also
relevant for any fixed My > 1. It shows that ||B™|| may grow at the rate v/n
or +/s.

The following two theorems show what growth rates can be achieved for
the three important matrix norms || - ||, p = 1,2, c0.

Theorem 2.7 Let p =1 or p = co. Then there exist C > 0and M > 1
such that

sup ||B"||, > Cvn forn=0,1,2,...,
s,B

where the supremum is over all integers s > 1 and all matrices B € C%*
satisfying the resolvent condition (1.10) with M1 =M and |- || = - |l

Proof. The proof for the case p = oo easily follows from a straightforward
adaptation of Example 2.2 in Lubich and Nevanlinna (1991) to the finite-
dimensional case.

More precisely, let ¢ denote a Mobius transformation that maps the unit
disk onto itself and is not just a rotation (such ¢ exist, see, e.g., Henrici
(1974)). We define B; = ¢(E;), where E; stands for the s x s matrix
E defined by (1.9). From the material in Lubich and Nevanlinna (1991) it
follows that every B, satisfies the resolvent condition (1.10) with ||| = |||l o
and a constant M; independent of s, and that

sl_1+1£10 I1Bloo = Cv/n forn=0,1,2,...,
where C is a positive constant. This proves the theorem for the case p = oo.

For p = 1 the result is obtained by noting that ||A||s = ||AT||s for all
AecC*». O
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Theorem 2.8 Let M > m+1 be given. Then there exist a constant C > 0
and matrices B, € C*° for s = 2,4, 6, ..., such that all B, satisfy (1.10) with
Mi=M,|-[|=1["|l2 and

”(33)9/2“2 > C(log s)1/2/ log log s.

Proof. It was shown by McCarthy and Schwartz (1965) that for each M >
7 + 1 there exist a constant v > 0 and s x s matrices E,; (for all even
positive s and j = 1,2,...,s) with the following properties:

8
(Eej)? =E,j #0, EsjEsx=0(#k), > Es;=I, (2.13)
=1
“ 3y E,JI > y(log )2/ loglog s, (2.14)
j odd
Bs =371 e*"U/SE, ; satisfies (1.10) with (2.15)
M1=Mand|| II—II ll2- '

For even s we have

(B,)*? = Z( 1YE,;=1-2 Y E,;.

j odd
In view of (2.14) this 1mp11es
1(Bs)*"?|l2 > 2vy(log s)*/%/loglogs — 1 for s =2,4,86,... .

Since all (B,)*/? # 0 there exists a constant C with the property stated in
the theorem. O

For additional interesting examples for the matrix norms ||-||, with p = 2,
oo we refer to McCarthy (1992).

We also mention that after completion of the present article new results
related to this were found by Kraaijevanger (1992) for the matrix norm

3. Stability estimates under resolvent conditions with
respect to general regions V
3.1. Linear stability analysis and stability regions

Consider an initial value problem for a system of s ordinary differential
equations of the form
U'(t)y = AU(t)+b(t) (¢=0),
U (0) = Ug.
Here A is a given constant s X s matrix, and ug, b(t) are given vectors in C?.
The vector U(t) € C® is unknown for ¢t > 0.

(3.1)
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In this section we analyse the stability of numerical processes for approx-
imating U(t). This analysis will also be relevant to classes of numerical
processes for solving partial differential equations.

To elucidate this relevance, we assume an initial-boundary value problem
to be given for a linear partial differential equation with variable coeflicients
in the differential operator (which depend on the space variable z but not
on the time variable t). Applying the method of semi-discretization, where
discretization is applied to the space variable z only, one arrives at an ini-
tial value problem for a large system of the form (3.1). In this case the
matrix A, the inhomogeneous term b(t), and the vector uy are determined
by the original initial-boundary value problem and by the process of semi-
discretization. The solution U(t) to (3.1) then provides an approximation to
the solution of the original initial-boundary value problem. For an example
we refer to problem (1.3); by replacing the derivatives with respect to z in
(1.3) by the same finite difference quotients as referred toin Section 1.2, one
arrives at an initial value problem (3.1) with the tridiagonal s x s matrix
A = (aji) given by (1.5). We note that problems (3.1) arise not only when
the semi-discretization relies on the introduction of finite differences, but
also when it is based on spectral approximations (see Gottlieb and Orszag
(1977) and Canuto, Hussaini, Quarteroni and Zang (1988)) or on the fi-
nite element method (see, e.g., Oden and Reddy (1976) and Strang and Fix
(1973)).

Many step-by-step methods for the numerical solution of ordinary differ-
ential equations, like Runge-Kutta methods or Rosenbrock methods (see
Butcher (1987) and Hairer and Wanner (1991)), reduce — when applied to
(3.1) - to processes of the form

up = p(hA)up—1+b, forn=1,23,.... (3.2)

Here ¢(¢) = P({)/Q(¢) is a rational function, depending only on the under-
lying step-by-step method. P(({),Q({) are polynomials, without common
zeros, such that ¢(0) = ¢’(0) = 1. Further, h = At > 0 denotes the step-
size, and we define p(hA) = P(hA)Q(hA) ! when Q(hA) is invertible. The
vectors b, € C° are related to b(t), and u, ~ U(nh) are calculated suc-
cessively from (3.2). It is worth noting that many numerical processes in
partial differential equations which are not constructed with the process of
semi-discretization in mind are still of the form (3.2), and can a posteriori
be conceived as relying on semi-discretization. For instance, it follows from
(1.4) that the process constructed in Section 1.2 can be written in the form
(3.2) with

P(Q)=01+(1-6)0a-60~"

and A = (a;i) satisfying (1.5).
Since (3.2) is a special case of (1.2), the stability analysis of (3.2) amounts
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to investigating the growth of matrices B™ with

B = p(hA).
In this analysis it is useful to introduce the stability region S, defined by
S ={¢: ¢ e Cwith Q¢) # 0 and |p(¢)] < 1}. (33)

Consider the following requirement on hA with regard to S,

o[hA] C S, and for each ¢ € 3S which is a zero of the
minimal polynomial of hA with multiplicity m > 1, (3.4)
the derivatives <p(j)(() vanish for j =1,2,...,m — 1.

Here o[hA] denotes the spectrum (set of eigenvalues) of hA, and 89S the
boundary of S. For the concept of minimal polynomial see, e.g., Horn
and Johnson (1990). The spectral mapping theorem (see Conway (1985)
or Rudin (1973)) states that, if Q(¢) # 0 for all ¢ € o[hA], then

olp(hA)] = {e(C) : ¢ € o[hA]}.

Hence, the condition o[hA] C S in (3.4) is equivalent to the condition o[B] C
D in (1.7) with B = ¢(hA). Further, from the Jordan canonical form of hA
it can be deduced that the condition regarding ¢ € 95 in (3.4) is equivalent
to the condition on the geometric multiplicities in (1.7). Consequently, (3.4)
is equivalent to (1.7). It follows that (3.4) is a necessary and sufficient
condition in order that a finite My exists with stability property (1.6) for
B = p(hA). '

We note that most functions ¢(() of practical interest have nonvanishing
derivatives ¢/(¢) on the whole of 8S. In this case (3.4) simply reduces to
o[hA] C S and the condition that all { € dSNa[hA] are zeros of the minimal
polynomial of hA with multiplicity 1.

In general (3.4) has similar advantages (it is relatively simple to verify, and
reliable for normal matrices) and disadvantages (quite unreliable for families
of matrices that are not normal) as the eigenvalue condition (1.7). In the
rest of this section we adapt (3.4) to conditions on hA that reliably predict
stability — also for nonnormal matrices and norms || - || on C** different
from the spectral norm. An advantage of these conditions on hA over a
resolvent condition on B = ¢p(hA) (as dealt with in Section 2) lies in the
circumstance that, in general, hA has a simpler structure than B, and that
knowledge available about S can be exploited.

3.2. Reviewing stability estimates from the literature

In the literature various stability results can be found, which are essentially
based on the use of resolvent conditions of the form
¢I — hA is invertible and ||(¢I — hA) Y| < My d(¢, V) !

for all complex numbers ¢ ¢ V. (3.5)
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Here, V is a closed subset of the stability region S (see (3.3)), M7 is a
constant, || - | denotes a norm on C** and d(¢,V) = min{|{ —n|: n € V}
is the distance from ¢ to V. Under additional assumptions, to be stated
below, it is shown in the literature that (3.5) implies a stability estimate

le(hA)*|| € Myg(n,s) forn=1,2,3,..., (3.6)
where the function g only depends on ¢ and V (and not on h, A, M, or

I 1D-

In the following we list some of these stability results. We assume through-
out that (3.5) is satisfied with closed V C S and a norm || - || on C**. In
each separate case we formulate the relevant additional assumptions and the
resulting function g.

For any W C C we denote by W the boundary of W, and write C~ =
{¢: ¢ € C with Re( < 0}.

1  In Lenferink and Spijker (1991a) (Theorem 2.2) estimate (3.6) is proved
with g(n,s) = s where v depends only on ¢ and V. The additional
assumptions are: V is bounded and convex; ¢’(¢) # 0 on 4V NAS; and
AV lies on an algebraic curve.

2  In Lenferink and Spijker (1991b) (Lemma 3.3) estimate (3.6) is proved
with g(n,s) = yn where v depends only on ¢ and V. The additional
assumptions are: V is bounded and convex; and || - || is induced by a
vector norm on C°.

3  In Reddy and Trefethen (1992) (Theorem 7.1) estimate (3.6) is proved
with g(n, s) = ymin(n, s) where v depends only on ¢. The additional
assumptions are: V = S, S is bounded; ¢’({) # 0 on 8S; and || - || is a
weighted spectral norm (i.e. |B|| = ||QBQ™1||2 for all B € C**, where
Q is an invertible matrix).

4  In Lubich and Nevanlinna (1991) (Theorem 3.1) estimate (3.6) is proved
with g(n, s) = ymin(n, s) where v depends only on ¢. The additional
assumptions are: V = C~ and || - || is induced by a vector norm on C*.

5  From the material in the important paper by Brenner and Thomée
(1979) it follows that (3.6) holds with g(n, s) = v+/n where v depends
only on ¢. The additional assumptions are: V. =C~, M; =1 and || - ||
is induced by a vector norm on C?*.

6  For § > 0 the wedge W (6) is defined by W(6) = {(:{ =0 or |arg( —
m| < 6}. In Lenferink and Spijker (1991b) (Lemma 3.1) estimate (3.6)
is proved with g(n,s) = 7 where v depends only on ¢ and V. The
additional assumptions are: V is a bounded convex subset of W(a),
where 0 < a < 7/2, V C int(S) U {0}; and || - || is induced by a vector
norm on C°.

7  In Crouzeix, Larsson, Piskarev and Thomée (1991) (Theorem 5) esti-
mate (3.6) is proved with g(n, s) = v where v depends only on ¢ and
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V. The additional assumptions, slightly adapted in order to fit in our
framework, are: V = W(a), SO W(B),0<a<f <w/2and | -|
is induced by a vector norm on C*®. For related material see Palencia
(1991, 1992) and Lubich and Nevanlinna (1991).

8  For p > 0the disk D(p) is defined by D(p) = {¢ : ¢ € Cand |[(+p| < p}.
In Lubich and Nevanlinna (1991) (Theorem 3.4) estimate (3.6) is proved
with g(n,s) = vv/1 + nro where v depends only on ¢. The additional
assumptions are: 79 > 0, V = D(rg), S D C~ and || - || is induced by
a vector norm on C*®. (The assumption S O C~ can be relaxed, see
Lubich and Nevanlinna (1991).)

9  The quantity r = sup{p : p > 0 and D(p) C S} is called the stability
radius of the step-by-step method (3.2) (see, e.g., Kraaijevanger et al.
(1987)). In Lenferink and Spijker (1991b) (Sections 2.3 and 2.4) it was
noted that, for 0 < r < oo, estimate (3.6) holds with g(n,s) = yv/n
where v only depends on ¢. The additional assumptions are: M =1,
I-1l=1"lloo and V = D(r). Next consider r € (0,00] and 0 < rq < r.
If (3.5) holds with V' = D(rg), then, again under the assumptions
My =1, ||| = - |lcc, inequality (3.6) even holds with g(n,s) = 7,
where v depends only on ¢ and r¢ (see Kraaijevanger et al. (1987) and
Lenferink and Spijker (1991b)).

10 In Brenner and Thomée (1979) and Lubich and Nevanlinna (1991) more
tefined estizaakes of the form (39) were derived fo1 fontthions p suts-
fying special conditions. For example, from Lubich and Nevanlinna
(1991) (Theorem 3.2) it follows that, in the situation of point 4, an
estimate (3.6) with g(n,s) = ymin(n®,s), a < 1, is possible for func-
tions ¢ with [©(¢)| not identically 1 on the imaginary axis. We refer
to Brenner and Thomée (1979) and Lubich and Nevanlinna (1991) for
more details.

3.8. Various comments on stability estimates from the literature

Remark 3.1 Results 1, 2, 6 and 8 in the last subsection were proved by
using integral representations of the form

plhd) = o [ PO (T~ Ry,

where T is a proper curve in the complex plane surrounding V, and by
estimating the integral (see, e.g., the proof of Theorem 2.1). Results 5, 7
and 10 were proved by using related, but different, integral representations
for p(hA)".

Results 3 and 4 were obtained by first proving that resolvent condition
(3.5) for hA implies a resolvent condition (1.10) for B = ¢(hA) (with a
different constant M) and then applying (a version of) Theorem 2.1 to this
matrix B.



LINEAR STABILITY ANALYSIS 219

Finally, the proof of Result 9 relies on an expansion of ¢(hA)™ in a power
series

@(RA)" = yoI +m(hA + pI) + v2(RA+ pI)? + - (3.7)
with p = 7 or 7, and on bounding the terms of the series using the fact that
the resolvent condition (3.5) (with M1 =1, || || = | : |lc and V = D(p))

implies a so-called circle condition |hA+ pI||c < p. The latter implication,
which is in fact an equivalence, follows immediately from Theorem 2.6 (with
B = p~1(hA+pI)), and was stated in Lenferink and Spijker (1991b) (Section
2.4). In Kraaijevanger et al. (1987), Nevanlinna (1984) and Spijker (1985)
this circle condition was combined with (3.7) to yield the desired stability
bounds.

Remark 3.2 We note that Results 2, 3, 4, 6, 7 and 8, although formulated
in Kraaijevanger et al. (1987), Nevanlinna (1984) and Spijker (1985) for
special norms, are valid as well for arbitrary norms || - || on C**. This can
be seen by a straightforward adaptation of the proofs in Kraaijevanger et
al. (1987), Nevanlinna (1984) and Spijker (1985).

Further, it is easy to see that Result 9 is also valid for norms || - || defined
by | B|| = ||QBQ ™|, (for all B € C**), where Q is an invertible matrix and
p=1 or oo.

Remark 3.3 In all of the above, the resolvent condition (3.5) occurs as a
sufficient condition for stability estimates of the form (3.6). Reddy and
Trefethen (1992) (Theorem 7.1) succeeded in showing (for the weighted
spectral norm, see Result 3) that (3.5) is also a necessary condition for
stability. In fact, they showed — for any matrix hA belonging to a spe-
cific family F defined in their paper — that, in general, strong stability (i.e.
le(hA)™| < Mp for all n > 0) implies the resolvent condition (3.5) with
V = 8§ and M; = yM,. Here v depends only on ¢ and F.

Remark 3.4 Modifications of Results 3, 5 and 9 can be proved if we relax
slightly the assumption V' C S for the set V in the resolvent condition (3.5).
This can be useful in applications (see Section 5).

(a) Let S be bounded and ¢’(¢) # 0 on 8S. Further, let 3> 0 and h > 0
be given. Suppose that the resolvent condition (3.5) is (only) satisfied
with respect to the set V = S+ ShD (but not necessarily with respect
to the smaller set V = S itself).

It follows from Reddy and Trefethen (1992) (Theorem 8.2) that there
exist positive constants 1, 2, 73 (only depending on ¢) such that these
assumptions imply the stability estimate

lo(RA)™|| < My1y1€"2P"" min(n,s) forn=1,2,3,... (3.8)
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whenever Sh < 73. This was proved in Reddy and Trefethen (1992)
for the weighted spectral norm (defined in Result 3). The proof in that
paper can be adapted in a straightforward way to arbitrary norms on
Cc2.

(b) Let 7 < oo have the same meaning as in Result 9, and let M; = 1,
|-l = | lloo- Further, let 0 < 79 < 00, rg < r and 8 > 0 be
given. Then there exists a constant hg > 0 such that ¢ is analytic on
W = D(ro) + BhoD = {¢ : ¢ € C and | + ro| < ro + Bho}. Suppose
that 0 < h < hp and (3.5) is (only) satisfied with V = D(rg) + 8hD.
These assumptions imply the stability estimate

lp(hA)™| < me™ ™ y/n forn=1,2,3,..., (3.9)

where the constants 7;, 2 depend only on ¢, r¢ and Shg (and not on
h, n, s or A). The proof is again based on the expansion (3.7) (with
p = 1p), and can be given in two steps. First we apply Theorem 2.6
(with B = (ro + Bh) "' (hA+roI)) to obtain |hA +rol|| < ro+ Bh and
then use (3.7) and estimates for the |yx| (see Spijker (1985), Corollary
4.3) to derive (3.9). Further, it is easy to see that this result is also
valid for norms || - || defined by ||B|| = ||QBQ ™|, (for all B € C**),
where @ is an invertible matrix and p = 1 or oc.

(c) An estimate of the form (3.9) can also be proved if we replace the
condition V = C~ in Result 5 by V = C™ + ShD. We refer to Brenner
and Thomée (1979) (Theorem 1) for more details.

Remark 3.5 Some of the arguments recently used in Kreiss (1990) and
Kreiss and Wu (1992) are closely related to the above, and can be interpreted
as yielding a result of the form (3.6). The assumptions on ¢ which are
made in Kreiss (1990) and Kreiss and Wu (1992) in order to derive stability
estimates comprise:

The half disk {¢ : Re ( <0, |[{| < R1} is contained in S, (3.10)
¢ is a polynomial which does not transform any
two different points ¢ with Re ¢ =0, || < R; (3.11)

into one and the same image point 2 with |z| = 1.
Here R; is a given positive constant. Assume the s x s matrix hA satisfies
|hA|| < R < Ry, (3.12)
(¢TI — RA)™Y| < Ky(Re ¢)™! for all { € C with Re ¢ > 0.(3.13)

Although the setting in Kreiss (1990) and Kreiss and Wu (1992) is different
in appearance from the one we use here, Theorem 3.2 in Kreiss and Wu
(1992) essentially states that (3.10)-(3.13) imply

(e — (hA))~L|| < Ko(Re ¢)~' forall ¢ withRe ¢ >0.  (3.14)
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We now show that this conclusion is related to the stability results described
earlier. First of all, the assumptions (3.12), (3.13) imply our resolvent con-
dition (3.5) with V = {¢ : Re ¢ <0, [¢| < R} and M; = v2K;. Further,
(3.14) can be proved to be equivalent to a resolvent condition of the form
(1.10) with B = ¢(hA). Therefore, by Theorem 2.1, (3.14) implies a result
of the form (3.6).

The stability estimates which are focused on in Kreiss (1990) and Kreiss
and Wu (1992) are pertinent to I3 norms, and essentially different from (1.6)
or (3.6). In fact, the estimates (3.6) are relevant to stability with respect to
perturbations in the initial value ug of process (3.2), whereas the estimates in
Kreiss (1990) and Kreiss and Wu (1992) are relevant to stability with respect
to perturbations in the vectors b, of (3.2). In Kreiss (1990) and Kreiss and
Wu (1992) this stability concept, referred to as stability in a generalized
sense, is argued to be equivalent to an inequality of the form (3.14) (see
Kreiss and Wu (1992) (Theorem 3.1)). Moreover, an analogous concept (of
stability in a generalized sense) for the continuous problem (3.1) is stated
to be equivalent to a resolvent condition of the form (3.13).

4. Various related concepts and problems
4.1. e-pseudospectra

The useful concept of e-pseudospectra has been introduced and studied by
Landau (1975), Varah (1979), Reddy and Trefethen (1990, 1992), Trefethen
(1992) and others. The focus in these papers is on the (weighted) spectral
norm. The main purpose of this subsection is to extend the notion of e-
pseudospectra to the situation of general matrix norms, and to relate it to
the resolvent condition (3.5).

Let ||-|| denote an arbitrary matrix norm on C**®. Let B be an s x s matrix
and € > 0. Consider for a given complex number A the situation where

there exists an s x s matrix E with ||E| < e such that A € ¢[B + E]. (4.1)

Analogously to Reddy and Trefethen (1990, 1992), Reichel and Trefethen
(1992) and Trefethen (1992) we give the following definition.

Definition 4.1 The set of all complex numbers X satisfying (4.1) is called
the e-pseudospectrum of B and is denoted by o[B].

We emphasize that — unlike the spectrum o[B] — the pseudospectrum
o¢[B] depends on the norm || - ||.

The concept of an e-pseudospectrum can be related to the following prop-
erties:

There exists an s X s matrix E with ||E|| =€ (4.2)
such that A\ € o[B + EJ; ’
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There exists an s x s matrix U with |U|| =1
such that ||(B - A)U|| < ¢

B — )1 is singular, (4.4)
or B — Ml is invertible with ||(B — AI) 7Y > ¢71. ’

(4.3)

We have

Theorem 4.2 (a) Let || - || be a matrix norm on C**. Then (4.1) and (4.2)
are equivalent (provided s > 2). Moreover (4.2) implies (4.3), and (4.3)
implies (4.4). If ||I|| = 1 then (4.3) and (4.4) are equivalent.

(b) Let || -|| be induced by a vector norm |-| on C%, s > 2. Then properties
(4.1) — (4.4) are equivalent to each other. Moreover, they are equivalent to
the requirement that

there exists a vector u € C*® with |u| = 1 such that |(B — Al)u| <e. (4.5)

Proof. (a) First we prove the equivalence of (4.1) and (4.2). The impli-
cation of (4.1) by (4.2) is trivial. To prove the reverse implication we as-
sume there exists a matrix E with ||E| < € and a vector u # 0 such that
(B+ E — AI)u = 0. When s > 2 we can choose a matrix C with C' # 0 and
Cu = 0. Define the matrix E(t) = E +tC for t > 0. There exists a positive
to such that |E(to)|| = € and A € o[B + E(t()], which proves (4.2).

Assume (4.2). Define V = [4,0,0,...,0] € C>* where u € C*® is an
eigenvector of B + E corresponding to the eigenvalue A. Defining U =
VI~V we arrive at |U|| = 1 and (B + E)U = AU. Hence ||(B — AI)U|| =
|[EU|| < €, which proves (4.3).

Assume (4.3). For invertible B — AI we get with E = (B — AI)U the
relation ||E|| < ¢, and therefore 1 = [|(B — AI) " E|| < ||(B — AI)7!||¢, which
proves (4.4).

Assume (4.4) and ||I|| = 1. If B — AI is singular then (4.3) holds with
U = [4,0,0,...,0], where u € C*® is in the null space of B — AI and is
chosen such that ||U|| = 1. If B — Al is invertible then (4.3) holds with
U=|I(B=A)~H~H(B -~

(b) Assume (4.3). Choosing v € C* with |v| = 1, |[Uv| = 1, we have
|(B — AI)Uv| < e. With u = Uv we arrive at (4.5).

Assume (4.5). Taking X = C® and y = u in the corollary to the Hahn-
Banach theorem formulated in the proof of Theorem 2.1, we see that there
exists a linear transformation F' : C* — C with

F(u)=1 and |F(z)| <|z| forall z € C®.
Defining the matrix E by
Ezx = -F(z)(B—A)u forall z € C?
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it follows that Fu = —(B — Al)u and ||E|| = |(B — AI)u| < ¢, which proves
(4.1).
In view of (a) the proof is complete. O

Remark 4.3 (a) In part (a) of Theorem 4.2 the assumption ||I|| = 1 is
essential for the equivalence of (4.3) and (4.4). This can be seen as follows.
Let s > 1, e = ||I||7}, A =0 and B = I. Then (4.4) is always satisfied but
(4.3) holds if and only if ||I|| = 1.

(b) For arbitrary matrix norms, (4.1) can be a stronger condition than
(4.3), even if ||I|| = 1. This can be seen from the following example. On
C2? we define a matrix norm by

IAll = max{[|All1, [|4llc} for all A = (a;;) € C*?
(see, e.g., Horn and Johnson (1990, p. 308)) and choose

A=0, e=% and B=<(1) i)

One easily verifies that condition (4.3) is satisfied by taking

U= 2 .
0 3

But, a straightforward calculation reveals that B + E is invertible for all
s X s matrices E with ||E|| < 1/2, showing that Condition (4.1) is violated.

Remark 4.4 If || - || is the spectral norm, then Conditions (4.1)—(4.5) are
all equivalent to the requirement that B — Al has a singular value ¢ with
o < € (see Reddy and Trefethen (1990), Trefethen (1992) and Varah (1979)).

Following Reddy and Trefethen (1990, 1992) we now formulate a theorem
which shows that the resolvent condition (3.5) can be nicely interpreted in
terms of the e-pseudospectra of the matrix hA.

Theorem 4.5 Let the norm || - || on C** be induced by a vector norm on
C% and let V, h, A, M, be as in Section 3.2. Then the resolvent condition
(3.5) is equivalent to the requirement that for all € > 0 the set o [hA] is
contained in V+ MieD={(: { =€+ nwith £ € V, |n| < Mie}.

The theorem can be proved in a straightforward way by using the fact
that, according to Theorem 4.2(b), Properties (4.1) and (4.4) with B = hA
are equivalent in the situation of the theorem.

Following the ideas of Trefethen (1992), the concept of e-pseudospectra
can also be used to determine numerically regions V and constants M; such
that (3.5) holds. In order to explain how this can be done we assume || - ||
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to be induced by a vector norm on C?*, write B = hA, choose a fixed € > 0,
denote the boundary of o.[B] by I'c and its length by |I'¢|. The set

V =0 [B] (4.6)

can be determined numerically, e.g., by checking for a large set of complex
numbers A whether (4.4) is satisfied. A corresponding constant M; can be
computed from the formula

My = | |(2me)~ L. (4.7)
In order to establish (4.7) we note that for ¢ ¢ V we have

@-B)7 =5 [ €-n70r-B)

and therefore

— -1 < .II-‘_EI — et = -1
66T = Bl < S max|(¢ — M) 7Het = Myd(g, V)
It should be noted that both V and M, depend on € so that it may pay to
evaluate (4.6) and (4.7) for various values of e.
We refer to Trefethen (1992) for closely related considerations and many

further interesting applications of e-pseudospectra.

4.2. The M-numerical range

When applying the stability results discussed in Sections 3.2 and 3.3, one
may want to prove rigorously resolvent conditions of the form (3.5). In the
following we show that the concept of the M-numerical range, introduced by
Lenferink and Spijker (1990), can be helpful. The M-numerical range, to be
defined below, can be viewed as a generalization of the classical numerical
range (for an s x s matrix B),

{z*Bz : z € C° with z*z = 1}.
The resolvent condition (3.5) will be seen to be satisfied when V' contains
the M;-numerical range of hA.

Let || - || be a matrix norm on C*°, and M a constant with M > |I||.
Assume B is a given s X s matrix. We focus on disks

D[y, p] = {¢: { € C with [¢ — 7| < p}
with arbitrary v € C, p > 0 such that
(B = yD)¥|| < Mp* fork=1,2,3,.... (4.8)
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Definition 4.6 The M-numerical range of B with respect to the norm ||-||
is the set 7a[B)] defined by

T™[B] = ﬂD['y, ol, (4.9
where the intersection is over all disks D[y, p] with property (4.8).

Let W be a nonempty, closed and convex subset of C. If £ belongs to the
boundary W of W and

Re{e (¢~ €)} <0 forall ¢ eW,

where @ is a real constant, then 0 is called a normal direction to W at £.
In order to formulate a basic theorem about the M-numerical range we
consider the following four conditions on B:

™[{B] C W, (4.10)
¢I — B is invertible and ||(¢I — B)~%|| < M - d(¢{, W)~ ¥

forall (¢ Wand k=1,23,..., (4.11)
l|exp[te= (B — ¢I)]|| < M for all t > 0,£ € OW (4.12)
and normal directions 6 to W at ¢, ’
there is a unital matrix norm || - [|" on C** with

corresponding 1-numerical range 7{[B] C W and (4.13)

MY Al < 1A' < M||A] (for all s x s matrices A).
The following theorem was proved by Lenferink and Spijker (1990).
Theorem 4.7 Properties (4.10)~(4.13) are equivalent to each other.

Clearly, 7p¢[B] is the smallest nonempty, closed and convex set W C C
with property (4.10). Therefore, Theorem 4.7 reveals three new character-
izations of the M-numerical range. We see that 7)s[B] equals the smallest
nonempty, closed and convex set W C C with property (4.11), and the same
holds with regard to properties (4.12) and (4.13).

It is clear that (4.11) is fulfilled for any set W with

™ [B] cwcc
In view of Definition 4.6 we thus can make the two following observations.

(I) If V is any closed subset of C with 7ps[hA] C V, then (3.5) is fulfilled
with M; = M.
(II) In order to construct a set V' as in (I) we only have to determine a finite
number of pairs v;, p; such that B = hA satisfies (4.8) for all v = v;,
p = pj. Clearly the set V = [ D[y;, p;] is as required.
j

In Lenferink and Spijker (1990) (Theorem 3.1) and Lenferink and Spijker
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(1991b) stability estimates were derived essentially along the lines of the
observations (I), (II).

We finally note that for M = 1 the set (4.9) coincides with the so-called
algebra numerical range (see, e.g., Bonsall and Duncan (1980) and Lenferink
and Spijker (1990)). In this case some simple expressions for 71[B] are
known. For || - || = || - ||, with p = 1,2, co these expressions are as follows.

o Let|:]|=|"|lco- Then m1[B] is equal to the convex hull of the union of
the Gerschgorin disks D[v;, p;] defined by v; = B;; and p; = 31, |Bjxl,
where (3;; denote the entries of B (see, e.g., Lenferink and Spijker
(1990) (Section 3.1.1)).

e Let|l-|| =|I-|l1- Then 71[B] is easily seen to be equal to the 1-numerical
range of BT with respect to || - ||co-
e Let|-|| =] |l Then m[B] equals the classical numerical range

{z*Bzx : x € C* with z*z = 1} - see the papers mentioned earlier.

4.8. Bounds on the exponential function of a matriz

In Section 3 we focused on stability of the time stepping process (3.2). In
this subsection we shall investigate stability of the underlying initial value
problem (3.1) itself.

Suppose the initial value up in (3.1) is replaced by a slightly perturbed
vector %y and U(t) is the solution to (3.1) with initial value . In analogy
to Section 1.2, (3.1) is said to be stable if a small perturbation v = @y — up
always yields errors V(t) = U(t) — U(t) (for t > 0) that are also small.
Therefore, the stability analysis of the initial value problem (3.1) amounts
to bounding V(t) (for t > 0) suitably in terms of vp. Since V(t) = et4vy we
consider the stability property

et < My for all t > 0, (4.14)

where My is a positive constant and | - || a norm on C*°.

By using the Jordan canonical form of A it can be easily seen that there
exists a finite M, with the stability property (4.14) if and only if the following
eigenvalue condition is satisfied:

All eigenvalues A of A have a real part Re A <0,
and the geometric multiplicity of each eigenvalue A (4.15)
with Re A = 0 is equal to its algebraic multiplicity.

Similar to the situation for the eigenvalue conditions (1.7) and (3.4), eigen-
value condition (4.15) can be reliable (e.g. for normal matrices) or misleading
(for families of matrices that are not normal). A reliable criterion for the
stability property (4.14), in general situations, can be based on the resolvent
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of A, and reads

¢I - A is invertible and ||((I — A)7!|| < M;(Re()™!
for all ¢ with Re( > 0.

In the following we shall discuss the relation between the stability property
(4.14) and the resolvent condition (4.16).
By using the formula

(4.16)

(I -A)"1= / e~Ctet4dt for all ¢ with Re¢ >0
0

one can easily see that (4.14) implies (4.16) with M; = Mj,. Conversely,
(4.16) implies (4.14) with M, depending only on M; and the dimension s,
but otherwise independent of A. Various authors have studied the size of
the optimal Mj as a function of M; and s for the spectral norm or other
special norms (see Miller (1968), Laptev (1975), Gottlieb and Orszag (1977)
and LeVeque and Trefethen (1984)). The following theorem sharpens and
generalizes their results to the case of arbitrary norms on C*%°.

Theorem 4.8 Let s > 1, A € C*° and || - || denote an arbitrary norm on
C**. If (4.16) holds for some M;, then
let4]| < esMy for all t > 0. (4.17)

Proof. The proof is analogous to that of Theorem 2.1, and is based on the
representation of et4 for t > 0 as

1
tA __ t¢ T—A -1 d
= ot ey G~ A7
(see also LeVeque and Trefethen (1984)). O

The sharpness of the bound (4.17) is considered in the following theorem,
which generalizes a result by LeVeque and Trefethen (1984) for the spectral
norm to the case of arbitrary norms on C**.

Theorem 4.9 Let s > 2 and an arbitrary norm || - || on C%* be given.
Then we have for all ¢t > 0

sup{le!4||/M1(A) : A € C>*, M;(A) < o0} >

88
—(s-1) -1/2(4 _ 1)1/2
o 1)!e > e(2m) ™ 4(s — 1)/%, (4.18)
where M;(A) denotes the smallest M; such that (4.16) holds (we define
M;(A) = oo if (4.16) is not fulfilled for any M;).

Proof. Let t > 0 be given. Define A € C*° by A = —al + vE where
a > 0 will be specified later, v > 0 is large and F is the matrix defined by
(1.9). After some calculations similar to those in the proof of Theorem 2.2




228 J.L.M. VAN DORSSELAER ET AL.

we obtain the relations

Mi(4) < s7(s—1y 7ty B (14 0(v7Y),

41 = et B (14 0 ()

and hence
le411/Ma(4) > e (at)* s (s = 1)'=*/(s — D1+ O(y71)  (as v — o).

If we choose a = (s — 1)/t, the right-hand side of the inequality tends to
s%e~ (-1 / (s—1)! as ¥ — 00, which is strictly larger than e(2r) ~1/2(s—1)1/2
by Stirling’s formula (see e.g. the proof of Theorem 2.4). O

Note that the upper bound ||e*4||/M;(A) < es of Theorem 4.8 and the
lower bound (4.18) of Theorem 4.9 differ by a factor ~ v/27s. This is
a less satisfactory situation than in Section 2.2, where the upper bound
|| B™||/M1(B) < es was shown to be essentially sharp. Further, Theorem 4.9
does not shed any light on the sharpness question for fized constants M,
since arbitrarily large M;(A) are allowed in (4.18).

For the special situation where (4.16) holds with M; = 1, the upper bound
(4.17) can be improved. This is the content of the following theorem, which
is a well-known result in semigroup theory (see, e.g., Pazy (1983) or Theorem
4.7 above).

Theorem 4.10 Let M; = 1 and || - | be a matrix norm. Then (4.16)
implies (4.14) with My = 1.

In the remainder of this section we will answer the question whether — in
addition to the upper bound (4.17) — there exists an upper bound depending
only on t and M;. This would be analogous to the situation in Section 2,
where ||B"|| was not only bounded by esM;, but also by e(n + 1)M; (see
Theorem 2.1). Clearly, this question is equivalent to the existence of a
function g such that

le*4]] < g(t, M;) for all t >0,

whenever resolvent condition (4.16) is fulfilled. The nonexistence of such a
function g is proved in Theorem 4.11.

Theorem 4.11 The matrices
-1 -2 ... -2

Ay = T e, s>,
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satisfy the resolvent condition (4.16) with ||-|| = ||-|| o and M; = 2. Moreover
we have
Jim lef42]|oo = 00 for all ¢ > 0. (4.19)

Proof. For A= A, we have A= —(I+ E)(I — E)~1, where E is the matrix
defined by (1.9). Hence we arrive for ( € C with Re{ > 0 at

1 2 Q/¢-1\1 .
cr-a7 <+1{I—c+1]§((+1) EJ}’
from which we obtain
_ Re( -1
I—A) Y i 3
(ReQCI-A) o < I<+1I{ IC }
= (Re<)|<+1|’1{1+2(|<+1|—|<—1|)-1}sz,

implying (4.16) with constant M; = 2.

In order to prove (4.19) we fix ¢t > 0 and define the complex function f by
F(¢) = exp[—t(1 +¢)(1 = ¢) Y] (for all ¢ # 1). The function f is analytic on
C\ {1} and can therefore be represented on the open unit disk by a power
series

x
F(€) = an(t)C™
n=0
Since f(ei?) = exp[— it/ tan(36)] (for small positive §), we see that the limit
limg_,o f(e?) does not exist, implying that

o0

> lan(t)| = oo. (4.20)

n=0

The proof of (4.19) is completed by combining (4.20) with

s—1 s-1
A=f(B) =3 an(DE", lelloo =3 lan(t)l.
n=0 n=0

0

We remark that after completion of the present paper new results related
to this were found by Kraaijevanger (1992) for the maximum norm | - || oo-
5. Applications and examples
5.1. Range of applications

It is clear from Sections 1.2 and 3.1 that the stability estimates discussed
in Sections 2 and 3 are relevant to numerical processes for solving linear
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differential equations which are essentially more general than the classical
test problems mentioned in Section 1.1. The results of Sections 2 and 3 have
a potential for clarifying actual stability problems in cases where Fourier
transformation techniques are unlikely to be successful. Such cases comprise
linear differential equations with nonsmooth variable coefficients, spectral
methods, and finite difference or finite element methods with highly irregular
geometries.

Still, at first sight, most of the stability results in Sections 2 and 3 may
be considered to be quite weak in that the upper bounds for ||B™|| do not
remain bounded as n — oo or s — oo. However, in computational practice
troublesome instability usually manifests itself by an exponential growth of
the error. Evidently such growth is not possible when the upper bounds
of Sections 2 and 3 are in force — these upper bounds grow at the rate of
some power of s or n. In fact, various authors have allowed such polynomial
growth in their definition of stability — e.g. Strang (1960), Forsythe and
Wasow (1960) and Gottlieb and Orszag (1977).

In Section 1.2 we indicated that bounds on ||B"|| are useful when analysing
the propagation of rounding errors vy = ug — ug. But the stability estimates
of Sections 2 and 3 are also relevant to the question of how fast the so-called
global discretization errors

dn = U(nh) — up (5.1)

approach zero when h = At — 0. Here U(t), u, satisfy (3.1) and (3.2),
respectively. We define the local discretization error e, by e, = h7lr,,
where r,, denotes the residual in the right-hand member of (3.2) when u,, and
Un—1 in that formula are replaced by U(nh) and U((n — 1)h), respectively.
Writing B = ¢(hA) we then have d,, = Bd,_1 + he,, and therefore

n
dn=h)_ B" e (5.2)
Jj=1

From this representation it is evident that the stability estimates from Sec-
tions 2 and 3, in combination with bounds on the local discretization errors,
can be used to derive bounds on the errors (5.1). We note that the same
holds true when in the numerical solution of a given partial differential
equation, with solution u(z,t), one replaces the vector U(nh) in (5.1) by a
suitable projection in C*® of the true u(z,t). Of course e, should then be
defined accordingly.

If nh =t > 0 is fixed, and the bounds on ||B"| grow with some power
of n (or s), then a straightforward application of (5.2) yields bounds on the
global errors that are of a lower order than the local discretization errors.
But, Strang (1960) has already shown that, even in the presence of such
polynomial growth, it may be possible to establish bounds on the global
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discretization errors that are of the same order as the local errors — provided
the problem itself is sufficiently smooth.

For subsequent extensions of Strang’s result to linear and nonlinear prob-
lems, see, e.g., Strang (1964), Spijker (1972), Brenner and Thomée (1979),
Thomée (1990), and the references therein. In the case of nonlinear prob-
lems the basic assumptions in these papers include the requirement that a
linearization of the actual numerical process is stable (in the sense that poly-
nomial growth is allowed). Therefore the stability analysis of linear processes
(as in the present paper) may contribute to the stability analysis of numeri-
cal processes for nonlinear differential equations, see also Lopez-Marcos and
Sanz-Serna (1988).

We finally comment on the relevance of the bounds on || exp(tA)|| obtained
in Section 4.3. Similar to the situation for ||p(hA)™|| discussed above, these
bounds are not only relevant for studying the effect of initial perturbations
v = g — uo (such as rounding errors) on the solution U(t) of initial value
problem (3.1), but also for analysing the global discretization error

d(t) =U(t) - U(t)

when (3.1) is obtained by semi-discretization of a partial differential equa-
tion. Here U(t) denotes a suitable projection in C* of the solution to the
partial differential equation. Defining the corresponding local discretization
error e(t) to be the residual appearing in the right-hand side of the differ-
ential equation in (3.1) when U(t) is replaced by U(t), we readily obtain
d'(t) = Ad(t) + e(t), so that

d(t) = /0 " exp((t — 7) A)e(r) dr.

From this representation, which is a continuous analogue of (5.2), one can
derive bounds on the global errors d(t) by combining bounds on the local
errors e(t) and the bounds on || exp(tA)|| obtained in Section 4.3.

5.2. Examples pertinent to the theory of Section 3

In order to illustrate some of the preceding notions and theorems we consider
the simple initial-boundary value problem

ut(z’t) = (a(:c)u(a:,t))x + g(a:,t), (5 3)
u(z,0) = f(z), u(1,t)=0, where0<z<1,t>0. )

Here a, g, f denote given functions with a(z) > 0. The values u(z,t) are
considered unknown for 0 <z < 1,¢t> 0.

We select an integer s > 1 and define Az = 1/s. Approximating (au), by
the forward difference quotient (see, e.g., Richtmyer and Morton (1967))

(a(z)u(z,t)): ~ (Az) H{a(z + Ax)u(z + Az, t) — a(z)u(z, 1)},
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problem (5.3) is transformed into a semi-discrete problem of the form (3.1)
with A = (a;i), where

ajj = —sa((j-1)/s) (1=12,...,9),
{ ajj+1 = sa(j/s) (G=12...,s-1),
Lo 77" = 0 otherwise.
Further,
b(t) = (9(0,2),9(1/s,2),...,9((s — 1)/5,8))7,

o = (f(0),f(1/s),...,f((s —1)/s)T,
and the jth component U;(t) of the solution U(t) to (3.1) approximates the
solution u(z,t) to (5.3) at (z,t) = ((j — 1)/s,t) (for j = 1,2,...,s).

In the following we focus on conditions that guarantee the stability of
the fully discrete numerical process (3.2). We will derive upper bounds for
llp(hA)™||p in the cases p = 1 and p = oco. For simplicity we assume that
the ratio 4 = h/Az is fixed. Further we introduce the constants

= = /
o= max a(z), fB Bax a (z).

Case 1: p = 1. For the norm || - ||; one easily verifies that the matrix hA
satisfies
IhA + apl||y < op.

Applying part (a) of Theorem 2.1 to the matrix B = I + (ap) "1hA we see
that hA satisfies the resolvent condition (3.5) with

Mi=1 and V ={¢:[(+ ap| < au}.
Suppose that ap < r, where r is the stability radius, which was defined in
Section 3.2 (Result 9) to be the radius of the largest disk in the complex left
half-plane which is tangent to the imaginary axis at the origin and lies in
the stability region S (defined by (3.3)). Then it follows from Remark 3.2
and the material in Section 3.2 that

le(RA)*||1 < ymin(s,\/n) forn=1,2,3,...,

where v depends only on ¢.
Under the more stringent condition au < r it follows from Result 9 (with
ro = ap) and Remark 3.2 that we even have

”(p(hA)nHI <v forn=12.3,...,

where <y depends only on ¢ and ap . Case 2: p = co. For the norm || - || »
one easily verifies that the matrix hA satisfies

|hA + apl||eo < ap+ Bh.

When 3 < 0 we can proceed as in Case 1. In the following we assume that
B >0.
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An application of part (a) of Theorem 2.1 to the matrix B = (au +
Bh)~t(hA + aul) shows that hA satisfies the resolvent condition (3.5) with

Mi=1 and V={C:|¢+ayu| <au+ Bh}.

Suppose that ap < r and r < oo. Let the stability region S be bounded and
¢'(¢) # 0 on 8S. Then it follows from Remark 3.4 (parts (a) and (b)) that
we have

lo(hA) oo < ¥1€"2P™ min(s,v/n) for n=1,2,3,...

whenever Sh < 3. Here 71, 72, v3 > 0 only depend on .

In case 7 = 0o we can apply the general result mentioned in Remark 3.4
(part (c)) so as to obtain a similar stability estimate.

Further illustrations of the theory of Section 3 can be found, e.g., in
Lenferink and Spijker (1991b) and Reddy and Trefethen (1992). In Kraai-
jevanger et al. (1987) an example was presented pertinent to problem (1.3).

5.8. Numerical illustrations

In order to give a numerical illustration of the material of Section 5.2 we
consider the classical fourth-order Runge-Kutta method (see, e.g., Butcher
(1987)). Applying this method to the semi-discrete problem (3.1) as speci-
fied in Section 5.2, one arrives at a fully discrete process (3.2) with

¢, ¢ ¢
<p(()=1+§+§!—+§!-+z. (5.4)
The corresponding stability radius r is equal to
r=1.393 (5.5)

(rounded to four decimal places). For later use we note that it follows from
the definition of r that

the interval [—2r, 0] is contained in S. (5.6)

We consider the matrix A, defined in Section 5.2, with three different
choices for the function a(z), viz.

a(@) =1, ay(z)=1-20 a3(x)=1-=z.

Using the notations of the preceding subsection, we have for all of these
functions that

a=1, g<L0.

For given s and function a(z) we shall measure the stability of the corre-
sponding numerical process by the quantity

c(p,a) = sup |lo(hA)" |-
n>0
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Table 1. Values of c¢(u,a;) for s =80

h po| o elpea) c(p, az) c(p, a3)
0.0125 1 1 1 1
0.0150 1.2 1.12 1.12 1.08
0.0175 1.4 2.26 2.26 1.30

0.0200 1.6 | 3.47x10° 2.58 x 107 4.20
0.0225 1.8 [4.93x10¥ 7.56x 101 1.73 x 10?
0.0250 2.0 | 9.06 x 105 2.68 x 10?5 4.17 x 104

For s = 80 we have listed some values of c(u,a;) in Table 1. In the table
we see good stability up to g = 1.4. This is perfectly in agreement with the
conditions of Section 5.2 since, in view of (5.5), the requirement

ap <71

amounts to u < 1.393. For p > 1.4 we see large values in the table, indicating
strong instability. It is worth noting that for all 4 < 2.0 requirement (3.4)
is still fulfilled, since for these u we have

olhA) C S\ 8S.

This inclusion follows from (5.5) and (5.6) and the fact that, for our functions
a;,
a[hA] C [-u,0).

The numerical results thus confirm the reliability of the stability criteria
discussed in Section 5.2, and the failing of the eigenvalue condition (3.4).

For further numerical illustrations related to the material of Sections 2
and 3 we refer to Trefethen (1988), Lenferink and Spijker (1991b) and Reddy
and Trefethen (1992). For a numerical illustration pertinent to problem (1.3)
see Kraaijevanger et al. (1987).
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